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This paper establishes bounds on the uniform error in the approximation of a
continuous function defined on a rectangle by polynomial product approximations.
The dependence of product approximations on the basis functions used for the
associated polynomial spaces is investigated.

1. INTRODUCTION

Several recent papers [ l, 6, 7, 9-12, 17, 18] have considered various
aspects and extensions of the concept of uniform product approximation. The
concern of this paper is the degree of approximation of continuous functions
defined on a rectangle by polynomial product approximations.

Let D = 1 X J = la, b1X Ie, d] and FE C(D), where C(D) denotes the set
of continuous real-valued functions on D. Suppose {~o,..., ~n} is a
TchebychefT system on 1. For y E J define F y E C(l) by Fy(x) = F(x, y) and
let

n

B'!(Fy , x) = ')"' !I(y) 'i(X)
i=o

(1.1 )

be the best approximation of F y from the linear span r:/J n of {~o,..., ~n} in the
sense of the uniform norm II . III' The coefficient functions !I(y), i = 0,..., n,
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PRODUCT APPROXIMAnON 7

are continuous over J (see [17 D. Suppose {'I'0 , ... , 'I'm} is a Tchebycheff
system on J, and for i = 0,..., n, let

m

SmU;, y) = I: fij'l'iy)
j=O

(1.2)

be the best uniform approximation of /; over J from the linear span 'Pm of
{'I'o"'" 'I'm}' The product approximation of F over D with respect to the
Tchebycheff systems {¢o"'" ¢n} and {'I'o"'" 'I'm} is defined to be Pn.mF,
where

n

(Pn.mF)(x, y) = L Sm(/;' y) ¢i(X)
i=O

n m

= L L /;j'l'j(Y) ¢i(X).
i=O .i=O

(1.3 )

Weinstein [17] has proven the following density theorem for product
approximation.

THEOREM 1.1. Let {¢i}~O and {'I'j}~o be Markoff systems on I and J
which are fundmamental in C(I) and C(J), respectively. For FE C(D), let
Pn.mF denote the product approximation of F over D with respect to the
Tchebycheff systems {¢o"'" ¢n} and {'I'o,'''' 'I'm}' Given e >0 there is an N(e)
and for all n ~ N(e) there is an M(e, n) such that

IIF-Pn.mFlln= sup IF(x,y)-(Pn.mF)(x,y)J <e
(X.Y)En

whenever n ~ N(e) and m ~ M(e, n).

We are concerned with the case where (/Jn and 'Pm consist of the algebraic
polynomials of degree at most nand m, respectively. In particular, we seek
bounds on IIF-Pn.mFlln which indicate the dependence of M(e,n) onn. It
will be shown that product approximations are dependent on the basis
{¢o,"" ¢n} for (/In and bounds will be established for product approximations
relative to three different bases for the space of polynomials of degree n or
less. Two types of error bounds are examined. The first type yields
comparisons between IIF - Pn.mFlln and the degree of approximation

E (F) = inf IIF - .::' \' c"'I'·¢·11n,m ........ .:...- I) J I
Ci} ;=0 j=O D

(1.4)

obtained by approximating F on D by polynomials of degree at most n in x
and at most m in y. The second type of error bounds are of the Jackson type
(see [2 D.
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It is clear that the degree of approximation of F E CCD) by product
approximations is closely related to smoothness properties of the coefficient
functions };(y). Although Weinstein [17] proves that the};( y) are continuous
over J, ditTerentiability properties are not established. In this paper, we give
conditions which ensure that the };(y), i = 0,... , n, are p times continuously
ditTerentiable over J. For a particular choice of basis functions for f/Jn' our
analysis will produce bounds on d};jdy, i = 0,... , n, which lead to a bound on

IIF - Pn.mFIID·

2. COMPARISONS

In the remainder of this paper, let 1= J = [-1, 1], D = I X J, and f/J nand
rpm be the sets of algebraic polynomials of degree at most nand m, respec­
tively. We consider product approximations relative to the following three
bases for f/J n: {l, x,..., x n}, {To(x), Tt(x), ..., Tn(x)}, where T;(x) is the ith
degree TchebychetT polynomial, and {lo(x), 11 (x), ..., In(x)}, where the l;(x) are
the Lagrange polynomials with nodes

~k = Cos(2k + 1)nj(2n + 2), k = 0,1,... , n, (2.1 )

the zeros of the (n + 1)st degree TchebychetT polynomial. For FE CCD) and
y E J, let

n

Bn(Fy, x) = L };(y) x;
;=0

n

= L I;(y) T;(x)
;=0

n

= L I:(y) l;(x)
;=0

(2.2)

be the best uniform approximation of Fy over I from f/Jn' The respective
product approximations of F shall be denoted by Pn.mF, P~.mF, and P~.mF.

For definitions and properties of the TchebychetT and Lagrange polynomials,
see Davis [3]. The following example indicates that Pn.mF, P~.mF, and
P~.mF may differ.

EXAMPLE. Let n = 2, m = 1, and

F(x, y) = - 4y(1 + y),

= 8x2y(1 - y),

-1 ~ Y <°
O~y~l.
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Since each F y E e:p2 = span{ 1, x, x2},

where
fo(Y) = - 4y(I + y), -1";y<O

=0, O";y";1
and

f2(y) = 0, -I";y<O

= 8y(I - y), o,,; y ,,; 1.

9

Application of the alternation theorem [2, p. 75] yields SI(fO' y) = 1/2 and
S](f2' y)= 1. Thus

Converting B 2(Fy, x) to Tchebycheff and Lagrange polynomials gives

B2(Fy , x) = [jo(Y) + ifiY)] To(x) + ifiy) T2(x)

= [fo(Y) +~f2(Y)] lo(x) + fo(Y) l](x)

+ [fo(Y) +~f2(Y)] 12(x),

where the nodes for the Ii(x), i = 0, 1,2, are /3/2, 0, and -/3/2. Best
approximation of the coefficient functions yields

and

Thus P 2,]F, PLF, and P~,IF may differ. As expected, the uniform errors
IIF-P2,]FIID=3/2, IIF-Pf.IFIID= 1, and IIF-pLFIID=7/6 also differ.

It is evident that this basis dependence results from the nonlinearity of the
Tchebycheff approximation operator Sm' Since Sm does not depend on the
polynomial basis for 'I'm' the product approximation of FE C(D) is
independent of the choice of basis for 'I'm once a basis for e:pn is fixed.

The first theorem of this section produces a comparison between
IIF-P~,mFIID and the error En,m(F) defined by (1.4).

THEOREM 2.1. If F E C(D), then

IIF-P~,mFIID"; [3+ ~ In(n+ 1)] En.m(F). (2.3)
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Proof Select (Fn,mF)(x, y) = L:f=O L:~o bul/f/Y) li(x) such that IIF­
Fn,mlID = En,m(F). It is easy to see that IF(x, y) - L:f=o/l(y) l;(x)1 ~ En,m(F)
for each (x, y) E D. Since li(~k) = 1 if k = i and li(~k) = 0 if k *" i, II(Y) =
Bn(Fy, ~i)' and L:.f=o bU'lli(Y) = (Fn,mF)(~i' y) for i = 0,... , nand Y E J. Thus

I/I(y) - j~O bu'lliY) I = IBn(Fy, ~a - (Fn,mF)(~i' y)1

~ IFy(~a - Bn(Fy, ~i)1

+ IF(~i' y) - (Fn.mF)(~i' Y)I·

Therefore 11/1- L:.f=o bUl/fjlIJ ~ 2En,m(F), and hence 11/1- SmCf!. . )IIJ ~
2En•m(F). Now for (x, y) E D,

IF(x, y) - (P~.mF)(x, y)1 ~ IF(x, y) - i~ I:(y)li(x) I

n

+ L 1/!(y) - SmCf!. y)111i(x)!
i~O

From Rivlin [15, p. 13], L:f=O 11i(x)1 ~ 1 + (2In) log(n + 1). This observation
and (2.4) now imply (2.3).

Remark. We note that IIF-P~,mFIID=O(logn)En,m(F)and that the
coefficient on the right-hand side of (2.3) is independent of m. This is a
significant theoretical improvement over a corresponding result for tensor
product interpolation using the zeros of Tn + I (x) and T m+ I (y) for the nodes
(see deBoor [4 D. In this later case the error bound over D is
o(log n log m) En,m(F).

If the ~i' i= 0,..., n, are orthogonal polynomials, results similar to (2.3)
can be obtained. In particular, we apply orthogonality properties of the
TchebychefT polynomials to derive an error bound corresponding to (2.3).

THEOREM 2.2. II FE C(D), then

IIF - P~,mFIID ~ (3 + 2n y2) En,m(F). (2.5)

Proof Let Fn,mF be as in the proof of Theorem 2.1. Then Fn,m may be
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written as (Pn.mF)(x, Y)=L7=oLf= obij'lliY) T;(x). For i=O,...,n, and
Y Elan application of the Cauchy-Schwarz inequality yields

f!TCY) -~o bijlf/i(Y) I

= II;ill~ IfI [Bn(Fy,x)-(Pn.mF)(x,Y)J T;(X)(I-X
2
)-1/2 dX !

< II ;;II~ )( I [B n(Fy, x) - (Pn,mF)(x, y) J2(1- X2)-1/2 dX! 1/2

.1fl Tf(x)(I_X2)-1/2 dx !1/2,

where IIT;II~=f~1 Tf(x)(I-x2)-I/2dx. Thus

kT(Y) - j~O bu'll;(Y) I< 11~2 ~~~ IBn(Fy, x) - (Pn,mF)(x, Y)I·

As in the proof of Theorem 2.1, this inequality implies that

f!T(Y) - j~O bij'llj(Y) 1< ~~ En.m(F).

Thus lifT - SmUT, . )IIJ <2 vnEn.m(F)/11 T;112' For (x, y) E D, the argument
given to obtain (2.4) now implies that

IF(x, y) - (P~.mF)(x, Y)I

< (1 +2yfic i~O IT;(x)I/1l T;112) En.m(F)

< (3 + 2n Vl) En,m(F).

The error bound (2.5) is not as strong as that given by (2.3). However, in
certain secial cases, (2.5) can be significantly improved.

THEOREM 2.3. Suppose that F(x, y) = f(x) g(y) +hey), where f E ql)
and g, h E ql). Then

where M is a positive constant independent of nand m.

Proof Since F(x, y) = f(x) g(y) +hey),

Bn(Fy,X) = {Bn(f,x)} g(y)+h(y)

(2.6)

(2.7)
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where Bn(f,x) = 'L7=oaiT/(x). Equation (2.7) implies that f~(Y)=

aog(y) +h(y), and that f;(y) = ai g(y), i = 1,... , n. From the proof of
Theorem 2.2 we have that

Ilfi(y) - SmUT, .)IIJ

~ 2 /7cEn.m(F)/11 Ti 112'

For i = I,..., n, this inequality implies that

i=O,I,... ,n. (2.8)

where 'Lj=o Cj'lliy) is the best uniform approximation to g on J. For
(x, y) E D,

I(P~.mF)(x, y) - Bn(Fy, x)1

I
n m n I

= 20 j~O aij'lliy) Ti(x) - i~O fi<y) T/(x)

= I~l ai [ g(y) - j~O C/'IIiy) ] T/(x)

+ lao g(y) + h(y) - SmU~, y)] To(x) I·

Therefore (2.8) implies that

I(P~,mF)(x, y) - Bn(Fy, x)1

~ I~l aJi(x) II g(y) - j~O Cj'lliy) 1

+ 2 /7c En.m(F)/11 Tol1 2

= max lakl Ig(y) - i: Cj'lliy) II ±a/T/(x) II max lakl
I <;;;k<;;;n j=O i~l I <;;;k<;;;n

+ 2En,m(F)'

Applying (2.9) to this inequality results in

I(P~,mF)(x, y) - Bn(Fy, x)1

~ 2 /7cEn.m(F) I±a/T/(x) II max lakl + 2En,m(F). (2.10)
i~l I <;;;k<;;;n
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Clearly

But

laol= I ~(lBnCf,X)To(X)(1-X2)-1/2dXI

:( 211flll'

Thus (2.11) implies that

Also for j = 1,..., n,

13

(2.11 )

(2.12)

lajl= I~ (1 BnCf,X)T/X)(I-X2)-,/2dxl

= I ~ (If(X) T/x)(I-x
2
)-1/2 dx

- ~ (1 {j(x)-BnCf,x)} Tj(X)(1-X2)-1/2dXI

? ~ IrI f(x) T;(x)(l - X
2
)-l/2 dx I

2 1

--llf-Bn(f,·)II/J ITix)I(1-x2)-l/2dx. (2.13)
n -I

The expression (2/n)f~l.fix) Tix)(1-x2)-1/2 dx represents the (j+ 1)8t
Fourier-TchebychefT coefficient of F. If f is not a constant function (in
which case F is a function of a single variable and the theorem is trivial),
then there is a j* ~ 1 such that

~ I(,/(X) Tj*(x)(1 - X2)-l/2 dx I= 2a > O.

This inequality and (2.13) now imply that there is an N? j* such that for
all n ~ N,

(2.14)
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where a is independent of n. Combining (2.10), (2.12), and (2.14) results in

This inequality now implies that

I(P~.mF)(x, y) -F(x, y)l::::; {(3 + 8 fillfIII/a)} En.m(F).

for all n ~ N.

Remark. Theoretically speaking, Theorem 2.3 establishes for a common
class of functions FE C(D) that uniform product approximation with
appropriate basis functions yields error bounds proportional to the best
possible error bound (in the sense of (1.4)). In contrast, there exist functions
of the type given in Theorem 2.3 for which the norm of the tensor product
interpolant (using the zeros of Tn + 1(x) and Tm + 1(y) for the nodes) diverges
as n + m -. +00.

3. JACKSON TYPE ESTIMATES FOR Pn.mF

In this section, we determine conditions on F which ensure that the coef­
ficient functions in (2.2) have continuous pth derivatives. This analysis leads
to bounds on the derivatives of the coefficient functions fi(Y)' From this we
shall derive Jackson type bounds for IIF - Pn.mFIID'

We assume that FE C(D) and on + 1F/axn+1 exists and is non-zero for all
(x, y) E (-1, 1) X J. In this case, Fy - Bn(Fy, .) has a unique alternation set

on which the function Fy-Bn{Fy,') attains the values ±IIFy-Bn{Fy, ·)111
with alternating signs (see [16]). Let

Then a vector (y, ao'"'' an' ~1'... , ~n) in the open subset a = {(y, ao,... , an'
~1 , ... , ~n): y, ao,· .., an E R, -1 < ~1 < ... < ~n < l} of R 2n +2 satisfies the con­
ditions

(i) Bn(Fy, x) = 2:7=0 aixi
,

(ii) -1 = ~o < ~I < ... < ~n < ~n + I = 1 constitutes an alternation set
for Fy - BAFy, .), and

(iii) y=A(Y)
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and

n

F(<;k' y) - L ai<;~ = (_I)i y,
i~O

k = 0,... , n + I,

1= 1,... , n.

(3.1 )

(3.2)

The necessity of the system (3.1) and (3.2) follows from the alternation
theorem. The sufficiency of (3.1) and (3.2) can be established by a Rolle's
theorem argument.

THEOREM 3.1. ifF, of/axE CP(D) and on+ IF/oxn +1 exists and is non­
zero for all (x, y) E (-1,1) X J, then the functions fi(y), frey), and f;(y),
defined in (2.2), possess continuous pth derivatives over J.

Proof We note that the system (3.1) and (3.2) of2n + 2 equations in the
2n+2 variables y, ao,... ,an, <;J'''',<;n has a unique solution in ot for each
y E J, namely, y = A(y), ai = fi(y), i = 0,... , n, <;k = xk(y), k = 1,..., n. We
rewrite the system (3.1) and (3.2) as

n

= (-I)k+l y +F(<;k'y)- .2.: ai<;~=O,
i~O

k = 0, ... , n + 1, (3.1)

of I ,n, ·;:i-I 0=- - a·l... l =,a ...... I
X (t/.y) i~l

1= 1,... , n. (3.2)

Since F, of/ox E CP(D), each Hk and G1 is of class CP on ot X J. In view of
the Implicit Function Theorem [13, p. 2101, the functions A(y), fi(y), i=
0,... , n, and xk(y), k = I,..., n, will be of class CP on (-1,1) if the Jacobian

for all y E (-1,1). In a fashion similar to that in Nitsche [141, we have that

n

.d(y) = (J 11
k~l

640/31/1-2



16

where (J = ± 1 and where

HENRY AND SCHMIDT

XO(Y) x~(y)

Dj(y) =
Xi-I(Y) Xl-I(Y)

xj+ I(Y) x1+I(Y) .

Xn+I(Y) X~+I(Y)

The Diy) are non-zero and have the same sign (see [2, p. 74 D, and thus
Ll~~ DiY)"* O. A straight forward Rolle's theorem argument ensures that
each

Thus Ll(y)"* O. Therefore eachft(y) is of class CP on (-1,1). By extending
F so that F and of/ox are of class CP on I X (-1 - e, 1 + e) for some e > 0,
the above argument can be used to see that each ft(y) is of class CP on J.

We complete the proof of Theorem 3.1 by noting that thefi(Y) andfl(Y)
are linear combinations of the ft(y) and thus are also of class CP on J.

Remark. The above proof also establishes that A(Y) and the xk(Y)
possess continuous pth derivatives whenever F satisfies the conditions of
Theorem 3.1. In this regard, Weinstein [17] proved the continuity of the
xk(Y) when on+ IF/oxn+ I is non-vanishing. The continuous variance of the
extremal points with respect to Y facilitates the computing of product approx­
imations (see [12, 17D.

The following lemma will be useful in establishing bounds on the uniform
error of approximation.

LEMMA 3.2. Let FE C(D). Then

n

+ L w(fi,J,n/(m+ 1)),
i=O

where w( g, J, 15) denotes the modulus of continuity of g [2, p. 86].
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Proof For (x, y) E D,

IF(x, y) - (Pn.mF)(x, Y)I

~ IFy(x) - Bn(Fy, x)1 + IBn(Fy, x) - (Pn.mF)(x, Y)I
n

~ sup IIFy - Bn(Fy, . )11/ + ~ Ih(Y) - SmU;, Y)llxil
YEJ ;=0

n

~ sup IIFy - Bn(Fy , • )11/ + ~ IIh - Sm(h, .)IIJ
YEJ ;=0

n

~supIIFy-Bn(Fy, ·)11/+ ~ w(h,J,n/(m+ 1)),
yEJ ;= 0

17

where the last inequality follows from Jackson's theorem [2, p. 147].
We now establish a bound on the uniform error IIF - Pn.mFIID' We first

estimate the derivatives Jlk)(y) = d"l;/dy\ k = 0,... , n. Equations (3.1) and
(3.2) may be restated as

and

n

F(xk(y), y) - ~ hey) x~(y) = (-ll Je(y),
;=0

i = 0,... , n + 1, (3.3)

OFj \n't()';_I() °- - ~ J; Y lXk Y = ,
ox (Xk(y),y) ;= I

i = 1,... , n. (3.4)

If F, of/oxE C'(D) and on+lF/oxn+1 exists and is non-vanishing on
(-1,1) X J, then we may differentiate the identity (3.3) with respect to Y,
and using (3.4) or the fact that xo(y)=-1 and xn + 1(Y)= 1, we obtain

of I - " Ji(y) x~(y)
oy (Xk(y),y) ;=0

= (-ll Je'(y), k = 0,... , n + 1. (3.5)

(3.6)

We now use (3.5) and (3.6) to estimate Ji(Y) and thus the moduli of
continuity ofJ;(y).

LEMMA 3.3. Suppose F, of/ox E C'(D), aH IF/a>! oy E C(D), j =
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0,..., n + 1, and on+ IF/oxn+I exists and does not vanish for all (x, y) E
(-1, 1) X J. Then

1 II on+2F II
IlfillJ~ i!(n-i+ 1)1 oxn+loy D

1 IOi+ IF I I+-;- sup -i- ,
z! yeJ ox oy (O.y)

i =0,..., n. (3.7)

Proof In the following argument, we fix y. Equation (3.5) and repeated
applications of Rolle's theorem imply that the polynomial H~i)(x) of degree
n - i or less interpolates the function Oi + IF/oxi oy at n - i + 1 points
(ormore) in (-1,1), i=O,... ,n. By the well-known error formula for
Lagrange interpolation [2, p. 60),

Oi + IF I (i) 1 on +2Fin __ i *
~ -Hy (x) = ( . 1)' 0 n+l o II<x-x;),
uX uy (x,y) n - I + . X Y (l,y) .i=0

where the xJ are the points of interpolation and eE (-1, 1) depends on x.
For x = 0, we obtain

IH(i)(O)1 & 1
y '" (n - i + I)!

Equation (3.6) now implies that

II
on+2F II IOi+IF I I

oxn+I OYD + oxioy (O.Yl·

1 II on+2F II 1 IOi+ IF I 1
Ifi(y)l~ i!(n-i+ 1)1 oxn+loy D+i! oxioy (o.y) •

Thus Lemma 3.3 is proven.
If fi E C(J), then the mean value theorem implies that W(fi' J, 6) ~

611fi Ill' Thus Lemma 3.3 provides an estimate for W(fi,J, 6).

THEOREM 3.4. Suppose F, of/ox E C'(D), o.i+ IF/ox.i oy E C(D), j =
0,..., n + 1, and on+IF/oxn+1 exists and is non-vanishing for all (x, y) E
(-1, 1) X J. Then if n >2,

nil Oi + IF 1 I \+)-SUP -.- .
t-;:o i! yeJ ox' oy (0. y)

(3.6)
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Proof Since of/ox E,C'(D), o2F/ox2E C(D), then by Jackson's theorem
[2, p. 147]

Applying Lemmas 3.2 and 3.3, we have

n
2

II o2F IIIIF - Pn,mFIID ~ 4n(n + 1) ox2 D

n ~,\ 1 II on+2F II
+ (m+ 1) i~O li!(n-i+ I)! oxn+1oy D

1 IOi+IF I Il+-sup -,-
il yEJ ox' oy (O,y)

n
2

II o2F II
= 4n(n+ 1) ox2 D

n III on + 2F II \~ 1
+ (m+ 1) I oxn+1oy Di70 i!(n-i+ 1)1

nIl Oi + IF I Il+ \' -sup -,- .
t::"o i! YEJ oX' oy (O,y)

The proof is completed by observing that

\' 1
- 0' ( . 1)'i~O /. n -[ + .

I \'" (n + 1 ) _ 2
n
+ I - 1

(n+ I)! ;":"0 i - (n+ I)!

Relative to Theorem 1.1, the following corollary shows that the M(e, n)
does not depend on n whenever F satisfies the conditions of Theorem 3.4 for
all nand

COROLLARY 3.5. Suppose that F, of/ox E e'(D), oj+ IF/oxj oy E C(D),
j = 0,1, , and that ojF/oxj exists and is non-zerofor all (x, y) E (-1, 1) X J,
j = 3,4, Also suppose there is a positive constant A such that
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j = 0, 1,.... Then if n ~ 2

HENRY AND SCHMIDT

(3.8)IIF-Pn,mFlln~4n(:~ 1) 11~~t +:~1'
The bound (3.8) implies that IIF-Pn,mFlln can be made small by

independently choosing nand m large. In this sense, the result of
Corollary 3.5 is stronger than that of Theorem 1.1. We further remark that
the bound of (3.8) in the case m = n is comparable to the Jackson estimate
for multidimensional best approximation (see Feinerman and Newman
[4, p. 101]).

The conditions of Corollary 3.5 are satisfied by such functions as
exp[x(y + p)], where Ipl > 1, (x + Y + p)I/IJ., where f.1 ~ 2 and p> 4, and
others of similar construction. The functions sin«x + y)/p) and
cos«x + y)jp), where p ~ 4/n possess non-vanishing (n + l)st partial
derivatives with respect to x for alternating values of n, in which case the
bound (3.8) holds for these values of n.

The techniques of estimating the f;(y) do not produce bounds on the
higher derivatives ofthefi(Y)' since neither (3.4) nor derivatives of (3.4) can
be utilized to reduce the corresponding differentiated equations in (3.5).

4. CONCLUSIONS

In the preceding sections, smoothness properties and error bounds have
been examined and established for certain uniform product approximations.
These theorems extend the continuity and density theorems of
Weinstein [17]. The results of Section 2 suggest that product approximations
are strongly dependent on the choice of basis functions. Indeed,
Theorems 2.1 and 2.3 demonstrate that for appropriate choices of basis
functions uniform product approximations are nearly as good as best
approximations. In addition, the error bounds of Theorems 2.1 and 2.3 are
sharper than that for tensor product interpolation [4]. The error estimates of
Section 3 show that for certain FE C(D) the error is O(1/n 2

) + O(l/m).
Thus the dependence of M(e, n) on n in Theorem 1.1 is eliminated.

The authors feel that the differentiability properties in Section 3 for fi(Y)'
i = 0,... , n, have not been fully exploited. Different techniques of proof may
more completely utilize the pth order differentiability of J;(y), i = 0,..., n.
Further investigations in this direction are appropriate.

REFERENCES

1. J. A. BROWN AND M. S. HENRY, Best Chebyshev composite approximation. SIAM J.
Numer. Anal. 12 (1975), 336-344.



PRODUCT APPROXIMATION 21

2. E. W. CHENEY, "Introduction to Approximation Theory," McGraw-Hill, New York,
1966.

3. P. J. DAVIS, "Interpolation and Approximation," Dover, New York, 1975.
4. C. DE BOOR, A comment on "Numerical Comparisons of Algorithms for Polynomial and

Rational Multivariate Approximations," SIAM J. Numer. Anal. 15 (1978), 1208-1211.
5. R. P. FEINERMAN AND D. J. NEWMAN, "Polynomial Approximation," Williams &

Wilkins, Baltimore, 1974.
6. J. N. HENRY, Computation of rational product approximations, Internat. J. Numer.

Methods Engrg. 10 (1976), 1289-1298.
7. J. N. HENRY, Comparison of algorithms for multivariate rational approximation, Math.

Camp. 31 (1977), 485-494.
8. J. N. HENRY, M. S. HENRY, AND D. SCHMIDT, Numerical comparisons of algorithms for

polynomial and rational multivariate approximations, SIAM J. Numer. Anal. 15 (1978),
1197-1207.

9. M. S. HENRY AND J. A. BROWN, Best rational product approximations of functions, J.
Approx. Theory 9 (1973), 287-294.

10. M. S. HENRY AND D. SCHMIDT, Continuity theorems for the product approximation
operator, in "Theory of Approximation with Applications" (A. G. Law and B. N. Sahney,
Eds.), pp. 24-42, Academic Press, New York, 1976.

11. M. S. HENRY AND D. SCHMIDT, Continuity theorems for the rational product approx­
imation operator, J. Approx. Theory 19 (1977), 135-142.

12. M. S. HENRY AND S. E. WEINSTEIN, Best rational product approximations of functions,
II, J. Approx. Theory 12 (1974), 6-22.

13. J. E. MARSDEN, "Elementary Classical Analysis," Freeman, San Francisco, 1974.
14. J. C. C. NITSCHE, Ober die Abhiingigkeit der Tschebyscheffschen Approximierenden einer

differenzierbaren Funktion von Intervall, Numer, Math. 4 (1962), 262-276.
15. T. J. RIVLIN, "The Chebyshev Polynomials," Wiley-Interscience, New York, 1974.
16. J. H. ROWLAND, On the location of the deviation points in Chebyshev approximation by

polynomials, SIAM J. Numer. Anal. 6 (1969), 118-126.
17. S. E. WEINSTEIN, Approximation of functions of several variables: product Chebyshev

approximations, I, J. Approx. Theory 2 (1969), 433-447.
18. S. E. WEINSTEIN, Product approximations of functions of several variables, SIAM J.

Numer. Anal. 8 (1971),178-189.


